Efficient feature selection filters for high-dimensional data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Feature Selection for High-dimensional Integrated Data

Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y , and the remainder of the predictors constitute a “noise set” Xu independent of Y . Using Monte Carlo simulations, we investigated the relative perfor...

متن کامل

Feature selection for high-dimensional industrial data

In the semiconductor industry the number of circuits per chip is still drastically increasing. This fact and strong competition lead to the particular importance of quality control and quality assurance. As a result a vast amount of data is recorded during the fabrication process, which is very complex in structure and massively affected by noise. The evaluation of this data is a vital task to ...

متن کامل

Feature Selection for Clustering on High Dimensional Data

This paper addresses the problem of feature selection for the high dimensional data clustering. This is a difficult problem because the ground truth class labels that can guide the selection are unavailable in clustering. Besides, the data may have a large number of features and the irrelevant ones can ruin the clustering. In this paper, we propose a novel feature weighting scheme for a kernel ...

متن کامل

Neighborhood Component Feature Selection for High-Dimensional Data

Feature selection is of considerable importance in data mining and machine learning, especially for high dimensional data. In this paper, we propose a novel nearest neighbor-based feature weighting algorithm, which learns a feature weighting vector by maximizing the expected leave-one-out classification accuracy with a regularization term. The algorithm makes no parametric assumptions about the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2012

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2012.05.019